Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 33(4): e4940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511482

RESUMO

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estradiol/química , Estradiol/metabolismo , Ligantes , Tamoxifeno/farmacologia , Tamoxifeno/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mamíferos
2.
J Transl Med ; 21(1): 437, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407981

RESUMO

BACKGROUND: Mucopolysaccharidosis IIIC (MPSIIIC) is one of four Sanfilippo diseases sharing clinical symptoms of severe cognitive decline and shortened lifespan. The missing enzyme, heparan sulfate acetyl-CoA: α-glucosaminide-N-acetyltransferase (HGSNAT), is bound to the lysosomal membrane, therefore cannot cross the blood-brain barrier or diffuse between cells. We previously demonstrated disease correction in MPSIIIC mice using an Adeno-Associated Vector (AAV) delivering HGSNAT via intraparenchymal brain injections using an AAV2 derived AAV-truetype (AAV-TT) serotype with improved distribution over AAV9. METHODS: Here, intraparenchymal AAV was delivered in sheep using catheters or Hamilton syringes, placed using Brainlab cranial navigation for convection enhanced delivery, to reduce proximal vector expression and improve spread. RESULTS: Hamilton syringes gave improved AAV-GFP distribution, despite lower vector doses and titres. AAV-TT-GFP displayed moderately better transduction compared to AAV9-GFP but both serotypes almost exclusively transduced neurons. Functional HGSNAT enzyme was detected in 24-37% of a 140g gyrencephalic sheep brain using AAV9-HGSNAT with three injections in one hemisphere. CONCLUSIONS: Despite variabilities in volume and titre, catheter design may be critical for efficient brain delivery. These data help inform a clinical trial for MPSIIIC.


Assuntos
Mucopolissacaridose III , Animais , Acetiltransferases/genética , Acetiltransferases/metabolismo , Encéfalo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/genética , Mucopolissacaridoses/terapia , Mucopolissacaridose III/genética , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Ovinos , Terapia Genética
3.
J Struct Biol ; 213(4): 107795, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509611

RESUMO

Adeno-associated viruses (AAV) are utilized as gene transfer vectors in the treatment of monogenic disorders. A variant, rationally engineered based on natural AAV2 isolates, designated AAV-True Type (AAV-TT), is highly neurotropic compared to wild type AAV2 in vivo, and vectors based on it, are currently being evaluated for central nervous system applications. AAV-TT differs from AAV2 by 14 amino acids, including R585S and R588T, two residues previously shown to be essential for heparan sulfate binding of AAV2. The capsid structures of AAV-TT and AAV2 visualized by cryo-electron microscopy at 3.4 and 3.0 Å resolution, respectively, highlighted structural perturbations at specific amino acid differences. Differential scanning fluorimetry (DSF) performed at different pH conditions demonstrated that the melting temperature (Tm) of AAV2 was consistently ∼5 °C lower than AAV-TT, but both showed maximal stability at pH 5.5, corresponding to the pH in the late endosome, proposed as required for VP1u externalization to facilitate endosomal escape. Reintroduction of arginines at positions 585 and 588 in AAV-TT caused a reduction in Tm, demonstrating that the lack of basic amino acids at these positions are associated with capsid stability. These results provide structural and thermal annotation of AAV2/AAV-TT residue differences, that account for divergent cell binding, transduction, antigenic reactivity, and transduction of permissive tissues between the two viruses. Specifically, these data indicate that AAV-TT may not utilize a glycan receptor mediated pathway to enter cells and may have lower antigenic properties as compared to AAV2.


Assuntos
Proteínas do Capsídeo/genética , Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos/genética , Mutagênese Sítio-Dirigida , Animais , Sítios de Ligação/genética , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Dependovirus/química , Dependovirus/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Células Sf9 , Spodoptera , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
4.
J Virol ; 95(13): e0048621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853961

RESUMO

Wild-type adeno-associated virus (AAV) can only replicate in the presence of helper factors, which can be provided by coinfecting helper viruses such as adenoviruses and herpesviruses. The AAV genome consists of a linear, single-stranded DNA (ssDNA), which is converted into different molecular structures within the host cell. Using high-throughput sequencing, we found that herpes simplex virus 1 (HSV-1) coinfection leads to a shift in the type of AAV genome end recombination. In particular, open-end inverted terminal repeat (ITR) recombination was enhanced, whereas open-closed ITR recombination was reduced in the presence of HSV-1. We demonstrate that the HSV-1 protein ICP8 plays an essential role in HSV-1-mediated interference with AAV genome end recombination, indicating that the previously described ICP8-driven mechanism of HSV-1 genome recombination may be underlying the observed changes. We also provide evidence that additional factors, such as products of true late genes, are involved. Although HSV-1 coinfection significantly changed the type of AAV genome end recombination, no significant change in the amount of circular AAV genomes was identified. IMPORTANCE Adeno-associated virus (AAV)-mediated gene therapy represents one of the most promising approaches for the treatment of genetic diseases. Currently, various GMP-compatible production methods can be applied to manufacture clinical-grade vector, including methods that employ helper factors derived from herpes simplex virus 1 (HSV-1). Yet, to date, we do not fully understand how HSV-1 interacts with AAV. We observed that HSV-1 modulates AAV genome ends similarly to the genome recombination events observed during HSV-1 replication and postulate that further improvements of the HSV-1 production platform may enhance packaging of the recombinant AAV particles.


Assuntos
Dependovirus/crescimento & desenvolvimento , Dependovirus/genética , Genoma Viral/genética , Vírus Auxiliares/genética , Herpesvirus Humano 1/genética , Recombinação Genética/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Coinfecção/patologia , Células HEK293 , Células HeLa , Herpes Simples/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infecções por Parvoviridae/patologia , Sequências Repetidas Terminais/genética , Células Vero , Interferência Viral/genética , Replicação Viral/genética
5.
Nucleic Acids Res ; 48(22): 12983-12999, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270897

RESUMO

The adeno-associated virus (AAV) non-structural Rep proteins catalyze all the DNA transactions required for virus viability including, DNA replication, transcription regulation, genome packaging, and during the latent phase, site-specific integration. Rep proteins contain two multifunctional domains: an Origin Binding Domain (OBD) and a SF3 helicase domain (HD). Studies have shown that Rep proteins have a dynamic oligomeric behavior where the nature of the DNA substrate molecule modulates its oligomeric state. In the presence of ssDNA, Rep68 forms a large double-octameric ring complex. To understand the mechanisms underlying AAV Rep function, we investigated the cryo-EM and X-ray structures of Rep68-ssDNA complexes. Surprisingly, Rep68 generates hybrid ring structures where the OBD forms octameric rings while the HD forms heptamers. Moreover, the binding to ATPγS promotes a large conformational change in the entire AAA+ domain that leads the HD to form both heptamer and hexamers. The HD oligomerization is driven by an interdomain linker region that acts as a latch to 'catch' the neighboring HD subunit and is flexible enough to permit the formation of different stoichiometric ring structures. Overall, our studies show the structural basis of AAV Rep's structural flexibility required to fulfill its multifunctional role during the AAV life cycle.


Assuntos
Trifosfato de Adenosina/análogos & derivados , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Proteínas Virais/genética , Trifosfato de Adenosina/genética , Microscopia Crioeletrônica , DNA Helicases/genética , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Dependovirus/ultraestrutura , Humanos , Proteínas Virais/ultraestrutura
6.
Sci Rep ; 10(1): 2121, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034258

RESUMO

We have previously designed a library of lentiviral vectors to generate somatic-transgenic rodents to monitor signalling pathways in diseased organs using whole-body bioluminescence imaging, in conscious, freely moving rodents. We have now expanded this technology to adeno-associated viral vectors. We first explored bio-distribution by assessing GFP expression after neonatal intravenous delivery of AAV8. We observed widespread gene expression in, central and peripheral nervous system, liver, kidney and skeletal muscle. Next, we selected a constitutive SFFV promoter and NFκB binding sequence for bioluminescence and biosensor evaluation. An intravenous injection of AAV8 containing firefly luciferase and eGFP under transcriptional control of either element resulted in strong and persistent widespread luciferase expression. A single dose of LPS-induced a 10-fold increase in luciferase expression in AAV8-NFκB mice and immunohistochemistry revealed GFP expression in cells of astrocytic and neuronal morphology. Importantly, whole-body bioluminescence persisted up to 240 days. We have validated a novel biosensor technology in an AAV system by using an NFκB response element and revealed its potential to monitor signalling pathway in a non-invasive manner in a model of LPS-induced inflammation. This technology complements existing germline-transgenic models and may be applicable to other rodent disease models.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Camundongos Transgênicos/genética , Animais , Técnicas Biossensoriais/métodos , Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Inflamação/genética , Luciferases de Vaga-Lume/genética , Camundongos , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Vírus Formadores de Foco no Baço/genética , Transcrição Gênica/genética
7.
Brain ; 142(8): 2402-2416, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31243443

RESUMO

Ever since its introduction 40 years ago l-3,4-dihydroxyphenylalanine (l-DOPA) therapy has retained its role as the leading standard medication for patients with Parkinson's disease. With time, however, the shortcomings of oral l-DOPA treatment have become apparent, particularly the motor fluctuations and troublesome dyskinetic side effects. These side effects, which are caused by the excessive swings in striatal dopamine caused by intermittent oral delivery, can be avoided by delivering l-DOPA in a more continuous manner. Local gene delivery of the l-DOPA synthesizing enzymes, tyrosine hydroxylase and guanosine-tri-phosphate-cyclohydrolase-1, offers a new approach to a more refined dopaminergic therapy where l-DOPA is delivered continuously at the site where it is needed i.e. the striatum. In this study we have explored the therapeutic efficacy of adeno-associated viral vector-mediated l-DOPA delivery to the putamen in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys, the standard non-human primate model of Parkinson's disease. Viral vector delivery of the two enzymes, tyrosine hydroxylase and guanosine-5'-tri-phosphate-cyclohydrolase-1, bilaterally into the dopamine-depleted putamen, induced a significant, dose-dependent improvement of motor behaviour up to a level identical to that obtained with the optimal dose of peripheral l-DOPA. Importantly, this improvement in motor function was obtained without any adverse dyskinetic effects. These results provide proof-of-principle for continuous vector-mediated l-DOPA synthesis as a novel therapeutic strategy for Parkinson's disease. The constant, local supply of l-DOPA obtained with this approach holds promise as an efficient one-time treatment that can provide long-lasting clinical improvement and at the same time prevent the appearance of motor fluctuations and dyskinetic side effects associated with standard oral dopaminergic medication.


Assuntos
Antiparkinsonianos/administração & dosagem , GTP Cicloidrolase/administração & dosagem , Vetores Genéticos/uso terapêutico , Levodopa/biossíntese , Transtornos Parkinsonianos/terapia , Putamen/metabolismo , Tirosina 3-Mono-Oxigenase/administração & dosagem , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/análogos & derivados , Animais , Antiparkinsonianos/uso terapêutico , Dependovirus/genética , Avaliação Pré-Clínica de Medicamentos , Feminino , GTP Cicloidrolase/análise , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Genes Reporter , Genes Sintéticos , Vetores Genéticos/administração & dosagem , Humanos , Macaca mulatta , Masculino , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Parte Compacta da Substância Negra/química , Parte Compacta da Substância Negra/patologia , Estudo de Prova de Conceito , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/análise , Proteínas Recombinantes/uso terapêutico , Tirosina 3-Mono-Oxigenase/análise , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
8.
Hum Gene Ther ; 30(9): 1052-1066, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31020862

RESUMO

Patients with the lysosomal storage disease mucopolysaccharidosis IIIA (MPSIIIA) lack the lysosomal enzyme N-sulfoglucosamine sulfohydrolase (SGSH), one of the many enzymes involved in degradation of heparan sulfate. Build-up of un-degraded heparan sulfate results in severe progressive neurodegeneration for which there is currently no treatment. Experimental gene therapies based on gene addition are currently being explored. Following preclinical evaluation in MPSIIIA mice, an adeno-associated virus vector of serotype rh10 designed to deliver SGSH and sulfatase modifying factor 1 (SAF301) was trialed in four MPSIIIA patients, showing good tolerance and absence of adverse events with some improvements in neurocognitive measures. This study aimed to improve SAF301 further by removing sulfatase modifying factor 1 (SUMF1) and assessing if expression of this gene is needed to increase the SGSH enzyme activity (SAF301b). Second, the murine phosphoglycerate kinase (PGK) promotor was exchanged with a chicken beta actin/CMV composite (CAG) promotor (SAF302) to see if SGSH expression levels could be boosted further. The three different vectors were administered to MPSIIIA mice via intracranial injection, and SGSH expression levels were compared 4 weeks post treatment. Removal of SUMF1 resulted in marginal reductions in enzyme activity. However, promotor exchange significantly increased the amount of SGSH expressed in the brain, leading to superior therapeutic correction with SAF302. Biodistribution of SAF302 was further assessed using green fluorescent protein (GFP), indicating that vector spread was limited to the area around the injection tract. Further modification of the injection strategy to a single depth with higher injection volume increased vector distribution, leading to more widespread GFP distribution and sustained expression, suggesting this approach should be adopted in future trials.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Mucopolissacaridose III/genética , Mucopolissacaridose III/fisiopatologia , Animais , Biomarcadores , Corpo Estriado/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Imunofluorescência , Expressão Gênica , Ordem dos Genes , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/isolamento & purificação , Hidrolases/genética , Camundongos , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/terapia , Neurônios/metabolismo , Especificidade de Órgãos/genética , Transdução Genética , Transgenes , Resultado do Tratamento
9.
PLoS One ; 13(7): e0200841, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30016371

RESUMO

Endonucleases of the HUH family are specialized in processing single-stranded DNA in a variety of evolutionarily highly conserved biological processes related to mobile genetic elements. They share a structurally defined catalytic domain for site-specific nicking and strand-transfer reactions, which is often linked to the activities of additional functional domains, contributing to their overall versatility. To assess if these HUH domains could be interchanged, we created a chimeric protein from two distantly related HUH endonucleases, containing the N-terminal HUH domain of the bacterial conjugative relaxase TrwC and the C-terminal DNA helicase domain of the human adeno-associated virus (AAV) replicase and site-specific integrase. The purified chimeric protein retained oligomerization properties and DNA helicase activities similar to Rep68, while its DNA binding specificity and cleaving-joining activity at oriT was similar to TrwC. Interestingly, the chimeric protein could catalyse site-specific integration in bacteria with an efficiency comparable to that of TrwC, while the HUH domain of TrwC alone was unable to catalyze this reaction, implying that the Rep68 C-terminal helicase domain is complementing the TrwC HUH domain to achieve site-specific integration into TrwC targets in bacteria. Our results illustrate how HUH domains could have acquired through evolution other domains in order to attain new roles, contributing to the functional flexibility observed in this protein superfamily.


Assuntos
DNA Nucleotidiltransferases/química , Dependovirus/enzimologia , Integrases/química , Biologia Computacional , Conjugação Genética , DNA/química , DNA Helicases/química , DNA Bacteriano/genética , DNA de Cadeia Simples , Endonucleases/química , Escherichia coli/metabolismo , Células HEK293 , Humanos , Plasmídeos , Domínios Proteicos , Proteínas Recombinantes/química , Ultracentrifugação
10.
Hum Mol Genet ; 27(17): 3079-3098, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29878115

RESUMO

Niemann-Pick type C disease (NP-C) is a fatal neurodegenerative lysosomal storage disorder. It is caused in 95% of cases by a mutation in the NPC1 gene that encodes NPC1, an integral transmembrane protein localized to the limiting membrane of the lysosome. There is no cure for NP-C but there is a disease-modifying drug (miglustat) that slows disease progression but with associated side effects. Here, we demonstrate in a well-characterized mouse model of NP-C that a single administration of AAV-mediated gene therapy to the brain can significantly extend lifespan, improve quality of life, prevent or ameliorate neurodegeneration, reduce biochemical pathology and normalize or improve various indices of motor function. Over-expression of human NPC1 does not cause adverse effects in the brain and correctly localizes to late endosomal/lysosomal compartments. Furthermore, we directly compare gene therapy to licensed miglustat. Even at a low dose, gene therapy has all the benefits of miglustat but without adverse effects. On the basis of these findings and on-going ascendency of the field, we propose intracerebroventricular gene therapy as a potential therapeutic option for clinical use in NP-C.


Assuntos
Adenoviridae/genética , Proteínas de Transporte/administração & dosagem , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/prevenção & controle , Terapia Genética , Longevidade/genética , Glicoproteínas de Membrana/administração & dosagem , Doença de Niemann-Pick Tipo C/prevenção & controle , Animais , Proteínas de Transporte/fisiologia , Transtornos Neurológicos da Marcha/genética , Transtornos Neurológicos da Marcha/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia
11.
Sci Signal ; 11(535)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921656

RESUMO

Mechanically activated, slowly adapting currents in sensory neurons have been linked to noxious mechanosensation. The conotoxin NMB-1 (noxious mechanosensation blocker-1) blocks such currents and inhibits mechanical pain. Using a biotinylated form of NMB-1 in mass spectrometry analysis, we identified 67 binding proteins in sensory neurons and a sensory neuron-derived cell line, of which the top candidate was annexin A6, a membrane-associated calcium-binding protein. Annexin A6-deficient mice showed increased sensitivity to mechanical stimuli. Sensory neurons from these mice showed increased activity of the cation channel Piezo2, which mediates a rapidly adapting mechano-gated current linked to proprioception and touch, and a decrease in mechanically activated, slowly adapting currents. Conversely, overexpression of annexin A6 in sensory neurons inhibited rapidly adapting currents that were partially mediated by Piezo2. Furthermore, overexpression of annexin A6 in sensory neurons attenuated mechanical pain in a mouse model of osteoarthritis, a disease in which mechanically evoked pain is particularly problematic. These data suggest that annexin A6 can be exploited to inhibit chronic mechanical pain.


Assuntos
Anexina A6/fisiologia , Conotoxinas/metabolismo , Mecanotransdução Celular , Dor/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Artrite Experimental/etiologia , Artrite Experimental/fisiopatologia , Biotinilação , Células Cultivadas , Canais Iônicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/etiologia , Osteoartrite/fisiopatologia , Dor/metabolismo , Dor/patologia
12.
Brain ; 141(7): 2014-2031, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788236

RESUMO

Recombinant adeno-associated viruses (AAVs) are popular in vivo gene transfer vehicles. However, vector doses needed to achieve therapeutic effect are high and some target tissues in the central nervous system remain difficult to transduce. Gene therapy trials using AAV for the treatment of neurological disorders have seldom led to demonstrated clinical efficacy. Important contributing factors are low transduction rates and inefficient distribution of the vector. To overcome these hurdles, a variety of capsid engineering methods have been utilized to generate capsids with improved transduction properties. Here we describe an alternative approach to capsid engineering, which draws on the natural evolution of the virus and aims to yield capsids that are better suited to infect human tissues. We generated an AAV capsid to include amino acids that are conserved among natural AAV2 isolates and tested its biodistribution properties in mice and rats. Intriguingly, this novel variant, AAV-TT, demonstrates strong neurotropism in rodents and displays significantly improved distribution throughout the central nervous system as compared to AAV2. Additionally, sub-retinal injections in mice revealed markedly enhanced transduction of photoreceptor cells when compared to AAV2. Importantly, AAV-TT exceeds the distribution abilities of benchmark neurotropic serotypes AAV9 and AAVrh10 in the central nervous system of mice, and is the only virus, when administered at low dose, that is able to correct the neurological phenotype in a mouse model of mucopolysaccharidosis IIIC, a transmembrane enzyme lysosomal storage disease, which requires delivery to every cell for biochemical correction. These data represent unprecedented correction of a lysosomal transmembrane enzyme deficiency in mice and suggest that AAV-TT-based gene therapies may be suitable for treatment of human neurological diseases such as mucopolysaccharidosis IIIC, which is characterized by global neuropathology.


Assuntos
Capsídeo/fisiologia , Terapia Genética/métodos , Engenharia de Proteínas/métodos , Animais , Dependovirus/genética , Feminino , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Células Fotorreceptoras/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retina/fisiologia , Distribuição Tecidual , Transdução Genética
13.
Proc Natl Acad Sci U S A ; 115(15): E3529-E3538, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581310

RESUMO

Adeno-associated virus (AAV) is a small human Dependovirus whose low immunogenicity and capacity for long-term persistence have led to its widespread use as vector for gene therapy. Despite great recent successes in AAV-based gene therapy, further improvements in vector technology may be hindered by an inadequate understanding of various aspects of basic AAV biology. AAV is unique in that its replication is largely dependent on a helper virus and cellular factors. In the absence of helper virus coinfection, wild-type AAV establishes latency through mechanisms that are not yet fully understood. Challenging the currently held model for AAV latency, we show here that the corepressor Krüppel-associated box domain-associated protein 1 (KAP1) binds the latent AAV2 genome at the rep ORF, leading to trimethylation of AAV2-associated histone 3 lysine 9 and that the inactivation of KAP1 repression is necessary for AAV2 reactivation and replication. We identify a viral mechanism for the counteraction of KAP1 in which interference with the KAP1 phosphatase protein phosphatase 1 (PP1) by the AAV2 Rep proteins mediates enhanced phosphorylation of KAP1-S824 and thus relief from KAP1 repression. Furthermore, we show that this phenomenon involves recruitment of the NIPP1 (nuclear inhibitor of PP1)-PP1α holoenzyme to KAP1 in a manner dependent upon the NIPP1 FHA domain, identifying NIPP1 as an interaction partner for KAP1 and shedding light on the mechanism through which PP1 regulates cellular KAP1 activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dependovirus/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Proteína 28 com Motivo Tripartido/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Replicação do DNA/fisiologia , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Dependovirus/genética , Epigênese Genética , Genoma Viral , Células HEK293 , Células HeLa , Humanos , Infecções por Parvoviridae/metabolismo , Infecções por Parvoviridae/virologia , Receptores de Neuropeptídeo Y/metabolismo , Proteínas Virais/genética , Vírion/metabolismo , Latência Viral , Replicação Viral/fisiologia
14.
Bio Protoc ; 7(9)2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28660237

RESUMO

Adeno-associated virus (AAV) is a small single-stranded DNA virus that requires the presence of a helper virus, such as adenovirus or herpes virus, to efficiently replicate its genome. AAV DNA is replicated by a rolling-hairpin mechanism (Ward, 2006), and during replication several DNA intermediates can be detected. This detailed protocol describes how to analyze the AAV DNA intermediates formed during AAV replication using a modified Hirt extract (Hirt, 1967) procedure and Southern blotting (Southern, 1975).

15.
Bio Protoc ; 7(6)2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28612042

RESUMO

Quantitative measurement of proteins binding to DNA is a requisite to fully characterize the structural determinants of complex formation necessary to understand the DNA transactions that regulate cellular processes. Here we describe a detailed protocol to measure binding affinity of the adeno-associated virus (AAV) Rep68 protein for the integration site AAVS1 using fluorescent anisotropy. This protocol can be used to measure the binding constants of any DNA binding protein provided the substrate DNA is fluorescently labeled.

16.
J Virol ; 90(15): 6612-6624, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170758

RESUMO

UNLABELLED: The life cycle of the human parvovirus adeno-associated virus (AAV) is orchestrated by four Rep proteins. The large Rep proteins, Rep78 and Rep68, are remarkably multifunctional and display a range of biochemical activities, including DNA binding, nicking, and unwinding. Functionally, Rep78 and Rep68 are involved in transcriptional regulation, DNA replication, and genomic integration. Structurally, the Rep proteins share an AAA(+) domain characteristic of superfamily 3 helicases, with the large Rep proteins additionally containing an N-terminal origin-binding domain (OBD) that specifically binds and nicks DNA. The combination of these domains, coupled with dynamic oligomerization properties, is the basis for the remarkable multifunctionality displayed by Rep68 and Rep78 during the AAV life cycle. In this report, we describe an oligomeric interface formed by Rep68 and demonstrate how disruption of this interface has drastic effects on both the oligomerization and functionality of the Rep proteins. Our results support a role for the four-helix bundle in the helicase domain of Rep68 as a bona fide oligomerization domain (OD). We have identified key residues in the OD that are critical for the stabilization of the Rep68-Rep68 interface; mutation of these key residues disrupts the enzymatic activities of Rep68, including DNA binding and nicking, and compromises viral DNA replication and transcriptional regulation of the viral promoters. Taken together, our data contribute to our understanding of the dynamic and substrate-responsive Rep78/68 oligomerization that is instrumental in the regulation of the DNA transitions that take place during the AAV life cycle. IMPORTANCE: The limited genome size of small viruses has driven the evolution of highly multifunctional proteins that integrate different domains and enzymatic activities within a single polypeptide. The Rep68 protein from adeno-associated virus (AAV) combines a DNA binding and endonuclease domain with a helicase-ATPase domain, which together support DNA replication, transcriptional regulation, and site-specific integration. The coordination of the enzymatic activities of Rep68 remains poorly understood; however, Rep68 oligomerization and Rep68-DNA interactions have been suggested to play a crucial role. We investigated the determinants of Rep68 oligomerization and identified a hydrophobic interface necessary for Rep68 activity during the AAV life cycle. Our results provide new insights into the molecular mechanisms underlying the regulation of the versatile Rep proteins. Efficient production of AAV-based gene therapy vectors requires optimal Rep expression levels, and studies such as the one presented here could contribute to further optimization of AAV production schemes.


Assuntos
Replicação do DNA , DNA Viral/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Virais/genética
17.
Biochemistry ; 54(38): 5907-19, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26314310

RESUMO

Adeno-associated virus (AAV) nonstructural proteins Rep78 and Rep68 carry out all DNA transactions that regulate the AAV life cycle. They share two multifunctional domains: an N-terminal origin binding/nicking domain (OBD) from the HUH superfamily and a SF3 helicase domain. A short linker of ∼20 amino acids that is critical for oligomerization and function connects the two domains. Although X-ray structures of the AAV5 OBD and AAV2 helicase domains have been determined, information about the full-length protein and linker conformation is not known. This article presents the solution structure of AAV2 Rep68 using small-angle X-ray scattering (SAXS). We first determined the X-ray structures of the minimal AAV2 Rep68 OBD and of the OBD with the linker region. These X-ray structures reveal novel features that include a long C-terminal α-helix that protrudes from the core of the protein at a 45° angle and a partially structured linker. SAXS studies corroborate that the linker is not extended, and we show that a proline residue in the linker is critical for Rep68 oligomerization and function. SAXS-based rigid-body modeling of Rep68 confirms these observations, showing a compact arrangement of the two domains in which they acquire a conformation that positions key residues in all domains on one face of the protein, poised to interact with DNA.


Assuntos
Proteínas de Ligação a DNA/química , Dependovirus/química , Proteínas Virais/química , Cristalografia por Raios X , Humanos , Modelos Moleculares , Infecções por Parvoviridae/virologia , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
18.
J Virol ; 89(14): 7428-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972561

RESUMO

High-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration.


Assuntos
Motivos de Aminoácidos , Proteínas de Ligação a DNA/metabolismo , Dependovirus/fisiologia , Proteínas Virais/metabolismo , Integração Viral , Linhagem Celular , Células Epiteliais/virologia , Fibroblastos/virologia , Humanos
19.
J Virol ; 88(15): 8227-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829354

RESUMO

UNLABELLED: Adeno-associated virus serotype 2 (AAV2) can efficiently replicate in cells that have been infected with helper viruses, such as adenovirus or herpesvirus. However, in the absence of helper virus infection, AAV2 establishes latency by integrating its genome site specifically into PPP1R12C, a gene located on chromosome 19. This integration target site falls into one of the most gene-dense regions of the human genome, thus inviting the question as to whether the virus has evolved mechanisms to control this complex transcriptional environment in order to facilitate integration, maintain an apparently innocuous latency, and/or establish conditions that are conducive to the rescue of the integrated viral genome. The viral replication (Rep) proteins control and direct every known aspect of the viral life cycle and have been shown to tightly control all AAV2 promoters. In addition, a number of heterologous promoters are repressed by the AAV2 Rep proteins. Here, we demonstrate that Rep proteins efficiently repress expression from the target site PPP1R12C promoter. We find evidence that this repression employs mechanisms similar to those described for Rep-mediated AAV2 p5 promoter regulation. Furthermore, we show that the repression of the cellular target site promoter is based on two distinct mechanisms, one relying on the presence of a functional Rep binding motif within the 5' untranslated region (UTR) of PPP1R12C, whereas the second pathway requires only an intact nucleoside triphosphate (NTP) binding site within the Rep proteins, indicating the possible reliance of this pathway on interactions of the Rep proteins with cellular proteins that mediate or regulate cellular transcription. IMPORTANCE: The observation that repression of transcription from the adeno-associated virus serotype 2 (AAV2) p5 and integration target site promoters is mediated by shared mechanisms highlights the possible coevolution of virus and host and could lead to the identification of host factors that the virus exploits to navigate its life cycle.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dependovirus/fisiologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , Proteína Fosfatase 1/genética , Proteínas Virais/metabolismo , Integração Viral , Linhagem Celular , Humanos , Latência Viral
20.
Biotechniques ; 56(5): 269-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24806228

RESUMO

The inverted terminal repeats (ITRs) of adeno-associated virus (AAV) are notoriously difficult to sequence owing to their high GC-content (70%) and palindromic sequences that result in the formation of a very stable, 125 bp long, T-shaped hairpin structure. Here we evaluate the performance of two widely used next-generation sequencing platforms, 454 GS FLX (Roche) and MiSeq Benchtop Sequencer (Illumina), in analyzing ITRs in comparatively sequencing linear amplification-meditated PCR (LAM-PCR) amplicons derived from AAV-concatemeric structures. While our data indicate that both platforms can sequence complete ITRs, efficiencies (MiSeq: 0.11% of sequence reads; 454: 0.02% of reads), frequencies (MiSeq: 171 full ITRs, 454: 3 full ITRs), and rates of deviation from the derived ITR consensus sequence (MiSeq: 0.8%-1.3%; 454: 0.5%) did differ. These results suggest that next-generation sequencing platforms can be used to specifically detect ITR mutations and sequence complete ITRs.


Assuntos
Dependovirus/genética , Análise de Sequência de DNA/métodos , Sequências Repetidas Terminais , Células HeLa/virologia , Humanos , Mutação , Reação em Cadeia da Polimerase/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...